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Anomalous Fluctuation and Relaxation in 
Unstable Systems 
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The essential ideas of the scaling theory of transient phenomena proposed 
by the author for a single macrovariable near the instability point are 
extended to rnulti-macrovariables in nonequilibrium systems. The time 
region is divided into three regimes according to the scaling behavior of the 
fluctuating parts of the macrovariables. In the first regime, the fluctuation is 
Gaussian and it is described by the linearized stochastic equation (or linear 
Fokker-Planck equation). In the second regime, the fluctuation is non- 
Gaussian, but it is probabilistic or stochastic (not dynamical) in the sense 
that the stochastic nature comes from the probability distribution in the 
initial regime and that each representative motion is deterministic, namely a 
random force can be neglected asymptotically in the second regime. In the 
final regime, the fluctuation is again Gaussian. A fluctuation-enhancement 
theorem for multi-macrovariables is given, which states that the fluctuation 
becomes enhanced by the order of the system size Y2 in the second regime, 
which is of order log ~2, if the initial system is located just at the unstable 
point. An anomalous fluctuation theorem for multi-macrovariables is also 
proven, which states that the fluctuation is anomalously enhanced in 
proportion to 3 -2 at times of order log 3 if the initial system deviates by 3 
from the unstable point. 

KEY W O R D S  : Macrovariable ; mult i-macrovariable ; mult imode ; most 
probable path;  variance; instabil i ty po in t ;  unstable system; fluctuation 
enhancement ; anomalous fluctuation ; relaxation ; mode coupling ; scaling 
property ; scaling theory ; Gaussian ; non-Gaussian ; linear, initial regime ; 
nonlinear, second regime ; nonequil ibrium system ; asymptotic evaluation ; 
~-expansion ; Fokker-Planck equation ; Kramers-Moyal equation. 

1.  I N T R O D U C T I O N  

In  a series o f  papers ,  (1-~ a genera l  t h e o r y  on  r e l axa t i on  a n d  f l uc tua t i on  n e a r  

the  ins tab i l i ty  p o i n t  has  b e e n  p r o p o s e d  b y  the  p r e s e n t  a u t h o r  a n d  has  been  
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applied to the laser model a'~'5~ and to superradiance ~6~ near the unstable 
point. 2 The previous arguments have concentrated on a single macrovariable 
for the sake of simplicity and mathematical rigor. However, the essence of 
the previous papers on a single macrovariable can be easily extended to 
multi-macrovariables (or many modes), as was announced in Ref. 1. The 
purpose of this paper is to give explicitly a general scheme for the extension 
of the scaling theory (1-~ for a single macrovariable to multicomponent 
systems. 

In Section 2, the essence of the scaling theory for a single macrovariable 
is rephrased in order to show how it can be extended to multi-macrovariables 
or an infinite number of macrovariables. In Section 3, a general scheme for 
the extension to multicomponent systems is given and a fluctuation-enhance- 
ment theorem for multi-macrovariables is derived. In Section 4, the anomalous 
fluctuation effect is also proven to occur in multicomponent systems, quite 
similar to the case of a single mode, ~2,1~ namely the fluctuation is anomalously 
enhanced inversely proportional to the square of the deviation ~ of the initial 
system from the unstable equilibrium point. 

2. ESSENCE OF THE SCALING T H E O R Y  OF A SINGLE 
M A C R O V A R I A B L E  

It will be very instructive to review the essence of the scaling theory ~1-~ 
of a single macrovariable near the instability point. The time region is divided 
into three regimes as shown in Fig. 1, according to the scaling behavior of the 
fluctuating parts of the macrovariables, namely (i) linear, Gaussian, initial 
regime; (ii) nonlinear, non-Gaussian, anomalous fluctuation, drift or scaling 
regime; (iii) linear, Gaussian, final regime. 

If  x(t) is an intensive macrovariable defined by 

x(t) = X(t)/f~; f~ = system size (1) 

we can separate m~ it into two parts as 

x(t) = y(t) + z(t) (2) 

where y(t) denotes the most probable path of x(t), and z(t) is the remaining 

2 For related work on unstable systems, see Refs. 7-9. 

O- 

t 
Fig. 1. a: Fluctuation; (a) initial regime, (b) second, non- 

linear regime, (c) final regime. 
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fluctuating part. Then, the above three regimes are classified as follows: 

(i) z(t) = O(f2-1/2) in the initial regime 
(ii) z(t) = O(1) in the second regime (3) 

(iii) z(t) = 0(s -1/2) in the final regime 

That is, the fluctuating part z(t) differs in scaling behavior with respect to the 
system size in each regime, when the system starts from (or near) the unstable 
point. This will be the simplest criterion for the classification of the above 
three regimes. 

In the initial regime, the intrinsic fluctuation is very small (of order 
f2-~/2) for a large g2, and consequently a random force acting on the system 
plays an essential role in this regime. Otherwise, the system does not change 
its state under the unstable equilibrium initial condition. Furthermore, the 
nonlinearity of  the system is not important in this regime, because the devia- 
tion of x(t) from the unstable point Xo is small. Therefore, the temporal 
evolution of x(t) in this initial regime is Gaussian and its distribution function 
satisfies the linear Fokker-Planck equation: 

0 { c~ 1 a 2 ) 
~ P(x, t) = --~xY(x - Xo) + -~ ce-ff-~x2 P(x, t) (4) 

where ~ = f2 -~, ~ = cz'(Xo), and c = c2(xo), c,(x) being the nth moment of 
the transition probability. The solution of  (4) with an initial condition Po(x) 
at t = 0 is given by 

1 f_'  { [ x - -y ( t ) ]2 \  Pjnl(x, t) = [2~rea2(t)] 1/2 o~ Po(Y) exp 2eaz(t) J dy (5) 

where 

y(t) = (y - xo)e 't + Xo; a2(t) = al(e 2"t - 1); or1 = c/(2~,) (6) 

In particular, if Po(x) is Gaussian, namely 

1 (x  - Xo) 2 (7) 
Po(x) (2,reCro)112 exp 2eao 

then P(x, t) takes the following Gaussian form: 

1 
Plnl(x, t) = [2~ree(t)]l/2 exp 

where the variance o(t) is now given by 

(x  - x0) 
2e~(t) 

o(t) = (ao + ql)e 2~ - al 

as is well known. The fluctuating part z(t) in (8) is given by 

z(t) ~., [,~r(t)] 1/2, or or(t) N ,- lz2(t)  

(8) 

(9) 

(lo) 
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and it becomes larger and larger as the time t increases, although it is of order 
-1/2 for a small t. When t increases to the order 

t ,,, t~ ~ (2~,) -1 log[f2/(a0 + al)] (11) 

the fluctuating part z(t) becomes of order unity [i.e., z(t) ,,~ O(1)], and thus 
the system is in the second, non-Gaussian regime for t ~ t~. Namely, the 
linear, Gaussian approximation (4) breaks down in the time region (11). 
However, our Gaussian approximation ~ predicts qualitatively what happens 
in the second regime. In fact, it shows that the fluctuation (or variance) is 
anomalously enhanced up to order unity (or f2 _~ e-1) in the second regime. 
Note that this anomalous fluctuation of order unity is maximum from the 
definition of the fluctuation [cf. the fluctuation (x2)o = (x 2) - (x)  2 
(x 2) ~< (maximum value of x) 2 ~ O(1)]. Thus, the scaling behavior of z(t) in 
the second regime is concluded to be z(t) = O(1). This will be used effectively 
in the non-Gaussian, scaling regime. 

In the second regime (or scaling regime), the fluctuating part z(t) becomes 
of order unity, namely it satisfies the scaling property 

z(t) ..~ O(1) (12) 

(i.e., invariant for scaling of the size). This indicates that the distribution 
function is very broad and consequently that the diffusion effect is neglected 
effectively for a large system size f2. Therefore, the distribution of x is governed 
asymptotically by the drift equation in the second regime. More explicitly, we 
discuss the Kramers-Moyal equation (1-~'1~ 

where 

and 

e -~ P ( x ,  = e 

f ~ (- 1)~-1 3If(x, p) = (1 - e-'Ow(x, r) dr = n! p"c.(x) (14) 
r~=l 

E" 

c,(x) = J r"w(x, r) dr (15) 

with the transition probability w(x, r). Assuming that all c~(x) are of order 
unity as usual, the scaling property of the nth term of the right-hand side of 
(13) is of order f2 -~ + 1 in the second regime, because all derivatives of P(x, t) 
with respect to x are of order unity from the scaling property (12). Thus, the 
first drift term is dominant in the second regime. That is, P(x, t) satisfies 
asymptotically the following drift equation: 

~ P(x, ~ t) + Fx ~ cl(x)P(x, t) = 0 (16) 
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This has been proven more rigorously in previous papers (1-4) by using the 
generalized scaling transformation of time of the form 

"r = E e  2~t (17) 

The characteristic equations of the partial differential equation (16) are 

dx/dt = el(x) (18) 

and 

dP/dt = - c~'(x)P (19) 

Equation (18) corresponds to the temporal evolution equation of the most 
probable path y(t). That is, all the phase points of P(x,  t) are governed by 
the classical (or deterministic) equation (18), as shown in Fig. 2. From (19), 
the solution of (16) with the initial condition P(x,  h) = Pill(x, h) at t = h 
is given by 

P(x,  t) = {cl(xl(x, t))}{cl(x)}-lPini(xl(x, t), h) (20) 

where x~(x, t) is the inverse function of the solution of (18) with the initial 
condition x = x~ at t = h : x = x(x l ,  t). If  we define a function f ( x )  by (2) 

f ( x )  =- exp ~, [c~(~:)] -~ d~ (21) 
~ .  " J a  0 

ao being determined so that f ' (xo)  = 1, then it is easily shown that the first 
factor of (20), c~(x~)/el(x), is the Jacobian of the transformation x~ -+ x: 

Oxl _ f ' (x )  e_~ el(x1) (22) 
8---x- f --~l)  = el(x) 

Thus, the transformation x~--+x [or the evolution (16)] conserves the 
probability. (13) In particular, if we use the Gaussian solution (8) in the initial 
regime, we obtain (~-4) 

P(x,  t) = 1 f ' ( x )  
(2rr'r)l/2 f ' ( x l ( x  , t)) 

( exp( -2~ , t l ){ f_ l ( f (x )exp[_~ , ( t_  h)])}2 ) (23) x exp 2e~ 

Fig. 2. Schematic time dependence of the distribution 
function in the second regime. 

0 ~X 0 ~X 



482 Masuo Suzuki 

where 

r = (ao + ol)ee TM - ~21 ~- ~rEe2"t; cr - ~r o + ~, (24) 

This is reduced asymptotically to the following scaling form: 

1 f 2 ( x )  (25) Pso(x, -c) = ~ f ' ( x )  exp 2T 

in the second nonlinear regime. It should be remarked that the distribution 
function depends upon the inverse system size e only through the scaling time 
variable �9 in the second, nonlinear regime. 

In the f ina l  regime, we may expect a normal Gaussian fluctuation for 
z( t ) .  Then, the distribution function satisfies (3~ asymptotically the following 
linear Fokker-Planck equation: 

fin _ [y,(x - x,)] + ~X2j~Pnn (26) 

where x, is the stable equilibrium point, 

~,~ = - e l ' ( x ~ )  > 0, and 6 = ez(x~) (27) 

The solution of (26) with the initial condition Pn , ( x ,  t2) = P~o(X, r(t2)) at a 
time t2 in the boundary region between the scaling and final regimes is 
expressed by (a) 

Pn~(x,  t) = [2rrarr(t)]l/2 ~ e~o(y, r(t2)) exp [x2ecrr(t)- Y(t)]2 dy (28) 

where 

and 

y ( t )  = (y  - x . ) e -~ . " - t2  ~ + xe (29a) 

(29b) ~r = err{1 -- exp[--2ye(t -- t2)]}; or = ~(2ye) -1 

This approaches the correct equilibrium state Peq(x) given by 

Peq(x) oc exp[ -  (x - xe)2(2Eor)-l] (30) 

near the stable equilibrium point x~. The qualitative behavior of Pnn(x,  t)  is 
independent of a choice of t2. In the case where there exist several stable 
equilibrium points, we divide the x region into subregions each of which 
contains only one stable equilibrium point inside and we define an initial 
function -soPhist",--, T(t2)) in the j th  subregion, which is equal to Pso(x, -r(t2)) in 
the corresponding subregion and vanishes outside. We can repeat the above 
procedure to construct P(f[)n(X, t) for each initial function Pf([~(x, -r(t2)). The 
required distribution function P[l~(x, t)  in the final regime is given by the 
sum of {Pnn(x, t)}. For the symmetric case of two stable equilibrium points 
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+ xe such as the laser model discussed in the previous papers, (1-5) the solution 
in the final regime is given by 

l(fo,.,.., [ x - y + ( t ) ] 2  Pri=(x, t) = [2zr~a/(t)]lj2 -~o ~:, r(t2)) exp ~ r - ~  dy 

f2  [ x -  y-(t)]2 } + p(2)r ~'(t2)) exp dy (31a) 

where y• = (y T- x,) exp[-) , , ( t  - t2)] + x~, and P~(~) corresponds to the 
scaling solution in the positive x region and P~(~) to that in the negative x 
region. Clearly, the above solution approaches asymptotically the correct 
equilibrium state with two Gaussian peaks around x = + x~. An alternative 
connection which is essentially equivalent to (31a) is given by 

1 r 0o 
Plan(X, t) = 2127r,~(t)y2 J_ oo P~c(Y, "r(t2)) 

[x - y+(t)] 2 [x - y_(t)] 2] 
• exp 2ecri(t) + exp ~ j dy (31b) 

An explicit result for the laser model (x-~) is shown in Appendix A. 
It also will be useful to explain qualitatively the anomalous fluctuation 

effect (2,x~ when the initial system deviates from the unstable point by 3; i.e., 
Yo = Xo + 3 (8 << 1), in the extensive region (E ~ << 3, with an appropriate 
positive exponent t~, which is equal to 1/2 in a normal situation), as shown in 
Fig. 3. The essence of the anomalous fluctuation theorem proven in a previous 
paper (z) is reinterpreted as follows. In the extensive region, the fluctuating 
part z(t) is Gaussian, and consequently, following van Kampen ( ~  and Kubo 
et aL, (~~ the temporal evolution equations of the most probable path 
y(t) and variance or(t) are given by 

d d a(t) = 2c~'(y)a(t) + c2(y) (32) -~tY(t ) = c~(y(t)), -di 

respectively. Although these equations are easily integrated, (t~ we discuss 
here the qualitative features by linearizing Eq. (32) around the unstable point 
Xo as follows: 

d ( 3 y )  = y(3y); 3y = y(t) - Xo, 7 = c~'(Xo) > (33) 0 

Fig, 3. e-~ plane; (a) unstable regime b < e"; (b) extensive 
regime e" << b; where tz = 1[2 in an  ordinary situation. o r- 
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and 

d 
d-~ ~z(t) = 2r~z(t) + c2(xo) (34) 

where we have used the condition that cl(xo) = 0. The solution of (33) is 

SY = $eYt; $ - ($Y)t=o = Yo - Xo (35) 

The above linear approximation is valid only when 

1By I < A (36) 

with a certain constant A of order 1 (or A << 1). 
For the time region ~y _ A, namely for 

t ~ tl ~ ~,-1 log(A/~) (37) 

the linear variance ez(t), which is the solution of (34), becomes very large or 
anomalously enhanced as 

A 2 1 
c~(tl) = (~o + e~)e 2'tl - e~ ~ (e0 + ~ 1 ) ~  ~ 8--5 (38a) 

with ~1 = c2(0)/(2~'), if (eo + e~) is nonvanishing. The saturation comes from 
the nonlinear effect neglected in the above linear approximation. This gives 
an intuitive explanation of the previous anomalous fluctuation theorem (2~: 

e(t, 8) _ %~ = 82 (38b) 

where y~o(r) is the scaling solution of the first equation in (32). That is, there 
occurs an anomalous fluctuation inversely proportional to the square of the 

T 

- -~d"  
- , -  ~0~ ( J / g ' )  ~ t 

Fig, 4. Qualitative features of the anomalous fluctuation in the extensive region and 
fluctuation enhancement in the unstable region. 
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deviation 3 of the initial system from the unstable point Xo in the time region 
proportional to log(l/g). The above situation is illustrated in Fig. 4, together 
with the fluctuation enhancement effect in the unstable regime. This treatment 
will be extended to multi-macrovariables in Section 4. 

An alternative formulation of  the scaling theory will be given in Appen- 
dix B, which is applicable both to the unstable region and to the extensive 
region. This formulation is based on the following Ansatz: 

P(x, t) ~ C exp[e-l~o0(x, t) + ~ol(x, t)] (39) 

for small e. Here it should be remarked that the second term q~l(x, t) is of  the 
same order as the first extensive term. Namely, both terms are equally important 
in the second sealing regime. 

3. E X T E N S I O N  TO M U L T I M O D E S  

The essence of the scaling theory for a single macrovariable presented in 
the previous section can be easily extended to multicomponent systems. For 
simplicity, we consider here the following Kramers-Moyal  equation for 
multi-macrovariables (1~ (Xj}: 

with the use of the vector notation defined by 

x = X/O; X = (X1, X2, X3 .... , X~) (41) 

where 

~ ( x ,  p) = f [1 - exp(r.p)]w(x, r, t) dr = 
( - 1 )  m-1 

m=l m! proem(x, t) (42) 

and Cm(X, t) is a tensor of  degree m defined by 

c~(x, t) = f r~w(x, r) dr (43) 

More generally, we may consider a wavenumber-dependent variable x~. 
The essential point of our extension is to divide the time region into the 

following three regimes, according to the scaling behavior of a fluctuating 
part z(t) [or z~(t)] defined by 

x( t )  = y ( t )  + z ( t )  o r  x~(t) = y~(t) + zk(t) (44) 

(i) Linear, Gaussian, initial regime, in which 

z(t) = O(f2-1/2) or ze -+ z;~, = b-"ze (45) 
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(ii) Nonlinear, non-Gaussian, second regime, in which 

z(t) = O(1) or zk ~ z~, = zk 

(iii) Linear, Gaussian, final regime, in which 

z(t) = O(f~ -t/2) or 

for the scale transformation 

L (length) -+ L' = bL, 

t 
z~ ~ zk, = b-az~ 

k--+ k '  = b - l k ,  

f~ -La___~ f~, = bd~ 

(46) 

(47) 

(48) 

Here, the scaling exponent a takes the value �89 usual situations correspond- 
ing to the Gaussian fluctuation of order ~ -  1/2 (where d denotes the dimen- 
sionality of the system), but it is, in general, permitted to assume an arbitrary 
positive value. 

From the above scaling properties of z(t) [or z~(t)], the temporal evolu- 
tion equation of P(x,  t) can be reduced 3 to (i) a linear Fokker-Planck equa- 
tion in the initial regime 

(49) 

(50) 

(51) 

- -  = -~-~.V.(x - x0) + ~ D  P(x, t) 
~t 

(ii) a nonlinear drift equation in the second regime 

~---~ + cl(x)P(x, t) = 0 

(iii) a linear Fokker-Planck equation in the final regime 

aP [ ~ x C O D  ~ ] P  -~  -- - -~xVe(  -- Xe) "[- ~--~ e~--~j 

if  there exists a stable equilibrium point xe. Here y, Ye, D, and De are constant 
matrices. That  is, the fluctuating random-force effect of the diffusion term 
(and higher terms) in (40) can be neglected effectively in the second regime, 
according to the scaling behavior (46). Note that the order of the nth term in 
(40) is f~-~ + 1, as in the case of a single mode. The above scheme is explained 
graphically in Fig. 5. 

The next important point is how to evaluate the order of the fluctuating 
part z(t) and how to estimate the magnitude of each time regime or boun- 

a The main idea in the present paper was reported at a joint meeting on plasma and 
nonequilibrium statistical mechanics organized by R. Kubo and held at the Institute of 
Plasma Physics, Nagoya University, March 15, 1976. 
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random force 

unstable point 

t =o ~-~ ~c~ 

initial regime second regime 

Fig. 5. Schematic e• of the temporal evolution of the system in the initial and 
second regimes. 

daries of the three time regimes. For this purpose, we start from Eq. (40) 
linearized around the unstable equilibrium point Xo: 

-~at e = - .Ko.(X - Xo) + ~ ~ Do P(x, t) (5a) 

where we have approximated (40) up to its second derivative. Here, the 
matrices Ko and Do are defined by 

O 
Ko = cl'(Xo) - ~-XXo cl(Xo), Do = (c~;(xo)) (53) 

The solution of (52) with the initial Gaussian distribution of a variance a(0) 
is given by 

1 1 ( - ( x  Xo) ( 2 ~ ( t ) )  (x Xo) ) (54 )  P(x, t) = (2~r~),/2 [det a(t)] 1/2 exp - 

Here the variance matrix t~(t) satisfies the equation ~I~ 

d g(t) = Koa(t) + e(t)Ko + Do (55) 
dt 

where I(o denotes the transposed matrix of Ko- The formal solution of (55) 
is expressed by (le'17) 

Io' ~(t) = exp(Kot) ~(0) exp(~ot) + exp[Ko(t - t')] Do exp[Ko(t - t')] dr' 

(56) 

We have an alternative, simpler expression of the form 

a(t) = [exp(Kot)] [~(0) - %1 exp(I(ot) + ~o (57) 

when there exists the solution ~o of the algebraic equation 

Ko% + aoRo + Do = 0 (58) 
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In order to study the scaling behavior of z(t) and to find when the system 
enters the second regime, we first investigate in detail the temporal evolution 
of the variance of fluctuation Ea(t) ~ ((x - x0)(x - xo)) in the above linear 
approximation. If  Ko is semisimple (i.e., diagonalizable), and {~j} are its 
eigenvalues, then the relaxation modes of a(t) are given by ~16~ a set of 
exp[(y~ + 7j)t], namely 

%z(t) = ~" a~ ~ exp[(y~ + yj)t] + bkl (59) 
t J  

where (a,~ z} and b~ are appropriate constants. For a more explicit expression 
for ~(t), see the review article by van Kampen (1~) for a diagonalizable Ko. 
This result shows how fast the fluctuation grows or decays. 

In general, an arbitrary matrix Ko is expressed by a sum of a semisimple 
matrix S and a nilpotent matrix N as 

K0 = S + N;  S N  = N S  (60) 

Let eigenvalues of S (and equivalently those of K0) be {TJ}. Then, Ko takes the 
following Jordan normal form after an appropriate regular transformation P: 

K2 7j 1 

PKoP- 1 = ; Kj = (61) 

0 0 1 

K~ 7j 

Each submatrix Kj is expressed by a sum of a subsemisimple matrix Sj and a 
subnilpotent matrix Nj defined by 

Sj = , Nj = (62) 

0 

in nj dimensions. The regular transformation P transforms ~(t) into the 
following: 

o'(t) = P~(t)P = exp(Ko't) a 'O) exp(Ko't) 

+ exp[Ko'(t - t')] Do' exp[K0'(t - t')] dr' (63) 

where 

Ko' = PKoP -a, o'(0) = Po(0)P, Do' = PDoP (64) 
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Therefore, a representative time dependence of the variance a~j(t) correspond- 
ing to the ith and j th  modes in the above representation is given by 

exp(tK~) aij(0)' exp(tKj)- = [exp(tS0] [exp(tN~) aij(0)' exp(tNj)] exp(tSj) 

= exp[t(7, + 7j)]. ~j(0, t) (65) 

where ~;(0, t) is a submatrix of  the form n~ • nj whose matrix elements are 
all polynomials of  t, at most, of the order of (n, + nj - 2). Thus, we obtain 
the following theorem: 

T h e o r e m  1. For an arbitrary time-independent regression matrix K0 
whose eigenvalues are {7~}, the variance ~;j(t) corresponding to the modes 7r 
and 7J takes the following exponential growth or decay with extra factors of 
polynomials of  t: 

a~j(t) = 6~j(0, t) exp[t(7~ + 73)] + const (66) 

and the order of the polynomial ~ ( 0 ,  t) is less than the sum of degrees of  
degeneracy of the eigenvalues 7, and yj. 

To calculate a~.(0, t) explicitly and to integrate the second term of the 
right-hand side of (63), it is convenient to note the following formula on the 
nilpotent matrix Nj: 

exp(tN~) = 

-1 t t 2 / 2 I  . . .  t " , - i / ( n j  - 1)!" 

1 t t " J - ~ / ( n j  - 2)! 

0 t 

1 

(67) 

Now let 71 be the (maximum) eigenvalue whose real part Re 71 is the 
maximum among all the eigenvalues {TJ). Then, the above linear approxima- 
tion breaks down around the time tl which satisfies 

]~a~l(tl)l ~ A, or la~l(tl) I ,,, /,,~-1 (68) 

or which is given by 

tl ~-, (2 Re 71)-1 log(A/c) (69) 

from Theorem 1. That is, the variance corresponding to the mode of the 
"maximum eigenvalue" 71 is seen to be anomalously enhanced around the 
time region (69), namely to be of  order ~-1, while the normal variance is 
of order unity. Then, the fluctuation enhancement factor R is given by 
/ {  ~ E - 1 "  
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Next, we discuss the time region for the anomalous enhancement of 
variances corresponding to other modes. From the above linear theory, they 
become anomalously enhanced at different time regions 

t,j ,~ [2 Re(r~ + ~,s)] -1 log(A/e) (70) 

if Re(~,~ + Vs) > 0. Here it should be remarked that the nonlinear effect 
neglected in the above linear approximation enhances anomalous fluctuations 
of other unstable modes in the same time region as (69), if there exists mode 
coupling among them. If  they are separated into certain independent sub- 
spaces, then we have to discuss, of course, the anomalous enhancement of 
fluctuations in each subspace, by using each maximum eigenvalue in each 
subspace. 

To see the nonlinear effect, we have to include other nonlinear terms into 
the expression of the probability distribution (54): 

[ ] P ( x ,  t )  ~ exp - ( x  - Xo) 2ea(t) - xo) + higher terms (71) 

Correspondingly, the fluctuation matrix can be expanded as 

((x - x0)(x - x0)) = Et~l(t) + ~2a2(t) + ~3oa(t) + "" (72) 

with o 1 ( t ) -  t~(t). It is easy to obtain formally the temporal evolution 
equations of the coefficients t;,(t) in (72), on the basis of the following 
equation <~> for the average of an arbitrary quantity Q(x): 

e ~ (Q(x)) + ~ *  x, E ~ Q(x) = 0 (73) 

where ~ *  is the adjoint operator of ~ ,  defined by 

2 ~*(x, p) --- - ~.. c~(x)p ~ (74) 
n = l  

That is, we obtain 

o.(t) + 26~* ~ (x - Xo)(X - Xo) ) = 0 (75) 
n=l / 

together with equations of motion in higher moments appearing in the 
second term of (75). 

It is found from Eqs. (75), etc., that fluctuations corresponding to other 
unstable modes than the ~1 mode become enhanced anomalously at the same 
time region as (69). More detailed arguments on these nonlinear effects or 
mode coupling will be given in Section 4 in the extensive region. 

Next, we discuss the second, nonlinear or non-Gaussian regime. As 
shown in the above paragraph, the nonlinear regime starts at the time region 
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(69). The fluctuating part z(t) becomes of order unity in this nonlinear regime, 
and it satisfies the scaling property (46). Thus, the following inequality holds: 

e ~ c2(x)P 

where the left-hand side is of order E in the second regime. The nth term of 
the second expression in (40) is of order e~ in the second, nonlinear regime. 
Thus, the Kramers-Moyal equation (40) can be reduced asymptotically to 
the following drift equation: 

~ P(x, t) + e~(x)P(x, t) -- 0 (77) 

(16) for a single macrovariable. The characteristic which corresponds to 
equations of (77) are 

and 

(d/at)x = c (x) (78)  

(d/dt)P + P div el(x) = 0 (79) 

Now let us assume that the solution of (78) with the initial condition x = Y0 
at t = to is given by 

x = X(yo,  t )  (80)  

and that the inverse solution of (80) is given by 

Y0 = y0(x, t) (81) 

Then, the solution of the drift equation is formally expressed by 

P~(x, t) = e x p [ - f  t div cl(x(yo, s))ds] P(yo(x, t), to) 
L ,~t o ~r 

= Jacobian~-~] P(yo(X, t), to) (82) 
\ X ] y0 = Yo(X,t) 

Therefore, the probability is conserved under the temporal evolution (77) or 
(78). These situations are shown schematically in Fig. 5. 

Thus, the fluctuation in the second regime is non-Gaussian, but it is 
probabilistic or stochastic in the sense that the stochastic nature comes from 
the probability distribution in the initial regime and that each representative 
motion is deterministic. Namely, a random force can be neglected asymp- 
totically in the second regime. This may be regarded as giving partially a 
conceptual foundation to the eddy turbulence theory of Tatsumi et al., (~8~ 
who have studied the energy spectrum of the eddy turbulence in the (deter- 
ministic) Navier-Stokes equation by imposing an appropriate probability 
distribution on the initial condition. 

The above arguments can be summariZed in the following. 
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Theorem 2 (Fluctuation-Enhancement Theorem). A large en- 
hancement of fluctuation occurs around the time region 

t m ~ (2 Re 7~) -1 log(l/e) (83) 

where 71 is the "max imum"  eigenvalue of the regression matrix K0. The 
enhancement factor R is given by 

R ,-~ 1/E (84) 

when the initial system is located at (or very close to) the unstable point with 
a variance of order E. 

In thefinal regime, the fluctuation is again normal as shown in (46) and 
consequently the temporal evolution of the system is asymptotically described 
by the linear Fokker-Planck equation (51), where 

a 
ve = e ; ( x e )  --  ~x~ c l (xe) ,  De = (c~(xe))  (85) 

with a stable equilibrium point Xe, if it exists. The solution of (51) with the 
initial condition 

P0(x) = U~(x, t2) (86) 

at a time t2 in the boundary region between the second and final regimes is 
expressed by 

1 1 f| Pfi~(x, t) = (2~)~/2 [det a(t)]l/2 -~  Po(Y) 

• e x p { - [ x -  y ( t ) ] ~  [ x - y ( t ) ] )  d"y (87) 

where 

and 

y ( t )  = ( exp[ve ( t  - t2) l)(y - Xe) + Xe 

(d/dt)~r = Ve-r + ar + De 

with ~i(t2) = 0. The solution of (88) is given by 

~I(t) = exp[ye(t - t')] De exp[~e(t - t')] d (  
2 

Thus we obtain 

fo ~s(oo) = exp(yd) De exp(~d) dt 

(88) 

(89) 

(90) 
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Therefore, Prin(X, t) approaches asymptotically the correct stable equilibrium 
solution for t -+ ~ .  The above solution (87) is seen to be qualitatively inde- 
pendent of the choice of t2. The above connection procedure can be extended 
to the case where there exist several stable equilibrium points, by dividing 
appropriately the n-dimensional x space into subregions each of  which 
contains only one stable equilibrium point inside, as was discussed in Section 
2 for a single macrovariable. When there does not exist a definite stable 
equilibrium point xe as in the case of a limit cycle, we need a more complicated 
treatment, which will be discussed in the future. 

4. A N O M A L O U S  F L U C T U A T I O N  EFFECT IN THE 
EXTENSIVE REGION 

In the preceding sections, we have discussed fluctuation and relaxation 
in the unstable region 32 ~< e as shown in Fig. 3. Here, 3 denotes a typical 
magnitude of  the deviation of  the initial system from the unstable point 
(say 3 ~ [Yo - x0I). Now, in this section we study the anomalous fluctuation 
effect (2,1~ in the extensive region ~ << 32. Since the fluctuating part z(t) of the 
intensive macrovariable x is normal, namely Gaussian in this extensive 
region, we put 

x(t) = y(t) + ~:(t)s -1/2 (91) 

in (40), following van Kampen, (1~ and expand (40) with respect to the 
smallness parameter e. Alternatively, following Kubo et al., (1~ we may also 
apply the extensivity Ansatz (z~ to (40). Anyway, the solution takes the 
following form(l~ 

p ( x , t ) = l  1 ( - [ x  1 ) 
(2~re) ~/2 [det a(t)] 1/2 exp - y(t)] ~ [x - y(t)] (92) 

asymptotically for a small E, where 

(d/dt)y(t) = c~(y(t)) (93) 

and the variance a(t) is determined by 

(d/dt)a(t) = K(y)n(t) + a(t)I~(y) + D(y) (94) 

with 

K(y) = (~yj cl~(y)), D(y) = c2(y) (95) 

In order to study the anomalous behavior of y(t) and o(t) near the 
instability point (3 << 1), we first linearize Eqs. (93) and (94) as 

d d g(t) = Ko a + aKo + Do (96) 3y(t) = K0 3y(t), 
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near the unstable point xo, where K0 and Do are given by (53), and 6y(t) = 
y(t) - Yo. Similar to the case for a single macrovariable in Section 2, the 
solution 6y(t) is expressed as 

6y(t) = [exp(Kot)] 6yo = [exp(K0t)] li (97) 

The second equation of (96) is the same as (55) in Section 3. Thus, the analyses 
of exp(Kot) and a(t) in Section 3 can be immediately applied to the present 
problem. By the use of the regular transformation P in (64), we obtain 

(6y(t))' -- P 6y(t) = [exp(Ko't)] S' = [exp(S't) exp(N't)] 6' (98) 

Therefore the j th  element (or subvector) of (98) is written as 

(6y(t))j' = e~?(et~J 8 / )  - e~, t 8 / ( t )  (99) 

Here 8 / ( 0  is a polynomial in t of order less than nj (where nj- denotes the 
degeneracy of the eigenvalue vj). As before, let )'1 be the (maximum) eigen- 
value whose real part Re ~,1 is the maximum. Then the above linear approxi- 
mation is valid at most only up to the time t~ which satisfies 

(6y(h)) l  ' =  3 exp(Re h) = A(const << 1) (100) 

where 6 = 61'(q) ~ 31' (a deviation of the "maximum" yl mode at the 
initial time). That is, tl is given by 

h = (Re 71) =~ log(A/3) (101) 

which corresponds to (37) for a single macrovariable. Next, the variance 
~ l ( t )  corresponding to the 7~ mode is given by 

(r~l(t) = 81~(0, t) exp(2~,~t) + const (102) 

from (66) in Section 3. This variance becomes of the order 

% - ~1(0, h) exp(2 Re ~ t )  = ~ ( 0 ,  q)(A/6) 2 ~ 1[62 (103) 

Namely, the variance of the maximum mode is seen to be enhanced more and 
more, in proportion to the inverse square of the deviation 6 of the initial 
system from the unstable point, as the time increases beyond the region (101). 
However, the saturation of the fluctuation comes from the nonlinear effect 
neglected in the above linear approximation. This will be discussed later. 
It should be remarked here that the maximum enhancement in the extensive 
region should be much less than that in the unstable region, that is, 

6-2 <<.e -1 or e<< 6 2 (104) 

because the order of instability here is much smaller than that in the unstable 
region. The inequality (104) is nothing but the criterion of the extensive 
region in Fig. 3. 
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Next, we discuss the nonlinear effect or mode-coupling effect in order to 
investigate fluctuations of other modes than the dominant 71 mode, and to 
study the saturation effect. 

For this purpose it is convenient to introduce the following extended 
vector representations for the matrices a(t) and D(t): 

(3)  = ( -11 ,  ~1~ .... , - 1 . ,  -2~ ,  *~3 .. . . .  *~ . ,  -3~, . . . ,  - . . )  
( 105 )  

(/3) = (D~x, D~2 ..... D~,, D22, D23,..., D2n, Da3,..., D,,)  

For later convenience, the procedure to make the above extended vector 
from the original matrix o may be written as 

--- ~ ' ( . )  (106) 

Then, the temporal evolution (94) of the variance a(t) is rewritten as 

d o ( t )  = S(y(t))3(t) + (107) /3(0 

where S(y(t)) is an extended matrix to project a(t) to (K.  + al~), namely 

S(y(t))3 --- ~ '(K~ + ~I~) (108) 

The dimensionality of S(y(t)) is n(n + 1)/2. By expanding (107) around the 
unstable point, we obtain the linear approximation corresponding to (96) in 
the form 

d 
3~ = SoO~ + /30; 

The solution of this equation is given by 

So = S(yo), etc. (109) 

3~(t) = eSot(3~(0) - 3o) + 3o (110) 

if there exists a solution 3o of the equation S0(70 + /50 = 0, i.e., if So is 
regular. This is an alternative expression of (57). Namely, we have cry(t) = 
o ~ ( ~  

For simplicity we consider here the case in which K0 is semisimple, i.e., 
diagonalizable. (The argument for the general case is quite similar, but more 
complicated expressions appear.) Then, we have 

K0' = P K o P  -1  = ( 1 1 1 )  

Y~ 



496 Masuo Suzuki 

The corresponding variance ~rz'(t) shows the following time dependence: 

a'~te2rl t 

tr[2e(ez + ez)t 

5/( t)  = ~(a , ' ( t ) )  = 3~'(Pa,(t)P) = + ~o' (112) 

kt:rnne2~n t 

That is, the eigenvalues of So are given by 271, 71 + 72 ..... 7~ + 7s ..... 27,, 
and So' transformed from So in terms of P is diagonal. However, S'(y(t)) is 
not necessarily diagonal, because of nonlinear coupling among modes. Then, 
we put 

S'(y(t)) = So' + 8S'(y(t)); So' - S'(yo) (113) 

If  S'(y(t)) is separated into some independent subspaces, then the following 
argument can be made in each subspace. Thus, from the beginning, we 
confine our arguments into an irreducible matrix S'(y(t)) or an intrinsically 
coupled system. In such an irreducible space, we expand 8S'(y(t)) with 
respect to ~y'(t) -- P ~y(t) - P(y(t) - Yo) as follows: 

3S'(y(t)) = ~ L,' 8y((t) + ~ L[j 3y,'(t) 3y/(t) + ... (114) 

where all L~', L~j,... are matrices of the same order as 3S'(y(t)). Thus, the 
temporal evolutions of 3y'(t) and a'(t) are described by the following non- 
linear coupled equations: 

(d/dO 8y'(t) = Ko' 8y'(t) + 8y'(t)Kl' 8y'(t) + ... (115) 

(d/dt)5'(t) = ( S o ' +  ~ L~' 8y((t)  + ...)5'(t) + /) '  (116) 

with appropriate coefficients KI' and L(. From the irreducibility of ~S'(y(t)), 
there exists at least one nonvanishing mode coupling. For example, the cross 
variance ~2(t)  corresponding to the 71 and 72 modes satisfies the following 
equation: 

(d/dt)a'~2(t) = ()'1 + Y2)cr~2(t) + a21 ~yl'(t)a'~l(t) + "" (117) 

with an appropriate nonvanishing constant a21. The solution of (117) is given 
by 

tr~2(t) = (exp[(71 + 72)t]} a21 ~yl'(t')~'ll(t')exp[--(71 + 72)t'] dr' + ... 

- a21a~l(0) 8 exp(3ylt) + const x exp[(71 + 72)t] + "'" (118) 
271 -- 72 
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where we have put 3yl'(t) ~- 3e ~lt. Since 3 exp(Re yitm) -- A (i.e., of order 
unity) in the second anomalous fluctuation regime, we obtain 

t 

a~2(tm) --- ~-~a~(O-~) exp(2yltm) -- ~ (119) 
Yl -- Y2 

Thus, the cross variance shows an anomalous fluctuation (oc 3-2) similar to 
a~z(t) for the time region tm ~ (Re ~,~)-1 log(l/3). The above arguments may 
be easily extended to any other general mode. Then, we obtain the following 
theorem. 

Theorem 3 (Anomalous Fluctuation Theorem).  The variance a(t) 
shows an anomalous enhancement 

m, " 3-2 at tm "~ (Re rl)  -~ log(l/3) (120) 

for coupled unstable modes. 

This is a generalization of the anomalous fluctuation theorem proven in 
a previous paper ~2) for a single macrovariable. 

We may also discuss the nonlinear effect of the most probable path y(t), 
and it is seen that y(t) becomes of order unity for the time region 
t~ ,,~ (Re ~,1) - i  log(I/3). Clearly, the saturation effect comes from the non- 
linear coupling among modes. For the specific case of two macrovariables, 
a more detailed study has been made by Saito and Kubo (19~ in the kinetic 
Bethe lattice, in which two macrovariables of long-range and short-range 
order parameters show similar anomalous fluctuations (,-~ 3-2) for the time 
region tm "" (Re y l ) - I  log(l/3) near the instability point (3 << 1). 

5. S U M M A R Y  A N D  DISCUSSION 

The scaling theory of transient phenomena for a single mode near the 
instability point has been extended to multimode systems. The time region 
has been divided into three regimes, namely (i) the initial, linear, Gaussian 
regime, (ii) the second, nonlinear, non-Gaussian, anomalous fluctuation, 
or drift regime, and (iii) the final, Gaussian regime. It has been proven that 
there occurs a large enhancement of fluctuation of relative order ~- i for the 
time region (83), when the initial system is just at (or close to) the unstable 
point (fluctuation-enhancement theorem). In the extensive region (~ << 32), the 
anomalous-fluctuation theorem has been established: The variance a(t) shows 
an anomalous enhancement proportional to 3 -2 for the time region 
tm ~ (Re yl) -  1 log(l/3) if the initial system deviates by 3 from the instability 
point. 

Our present argument can be extended to more refined treatments to 
divide the time region into more than three regimes or an infinite number of 
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regimes. Although we have discussed mainly a finite number of multi- 
macrovariables in the present paper, the fundamental idea will be useful 
even for an infinite number of macrovariables, as suggested in Eqs. (44)-(48). 
For example, the temporal evolution of the system in the second regime is 
described by the drift equation 

L otP({xk} ) + ~ 0 cl((xk})P({x~}, t) = 0 (121) 
l~ OXk 

although for practical calculation it still needs an approximation such as by a 
perturbation calculation. Such an extension has been tried by Kawasaki (2~ 
in the time-dependent Ginzburg-Landau equation. An application to a 
chemical reaction of two components is discussed in Appendix C. 

APPENDIX A. RELAXATION IN THE LASER MODEL 

The scaling solution for the laser model with cz(x) = 7x(1 - x 2) and 
c2 = 2 is given by (1'~) 

P~c(x,'r)= 1 [ x2 3 ] 
(2,rr)Z/2 exp 2r(1 - x 2) ~ log(1 - x 2) (A.1) 

with ~- = e(a 0 + a~) exp(27t) and al = 7'-L Consequently, the solution in the 
final regime is expressed by (31a) or (31b) with (A,1). Here, we put r(t2) = 1, 
which corresponds to the time when double peaks appear appreciably near 
Xe = + 1. (Note that the transition time from a single peak to double peaks 
is given by ro = 1/3 in the scaling theory. (1,~>) Thus, an explicit result after 
integrating (31a) for (A.1) is shown in Fig. 6. A new point is that the proba- 

~.(a) 
4"~e t 

/ \,[b) [h) t!l 

JJJl \\\\ 
-1.0 -0.5 0 0.5 1.0 

~ . 3 C  

Fig.  6. Change o f  the d i s t r i bu t i on  f unc t i on :  (a) Po = ~(x) at t = 0; (b) ~- = 0.02; 
(c )  z = 0 . 2 ;  ( d )  7 = ro  = 1 / 3 ;  ( e )  r = 0 . 5 ;  ( f )  r = 1;  ( g )  �9 = 2 ;  ( h )  �9 = 4 ;  a n d  ( i )  Poq 

a t  t = o r ,  w h e r e  ~ I  = 1, a n d  T = 0 . 0 1 .  
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bility distribution function in the final regime has been calculated and that it is 
spread outside the equilibrium points x~ -- + 1, as it should be. 

APPENDIX  B. AN ALTERNATIVE FORMULATION OF 
THE SCALING THEORY 

The scaling results (23) and (25) suggest an alternative formulation of 
the scaling theory, which assumes the Ansatz (39); namely 

P(x ,  t) ~ Cexp[(1/E)q~o(x, t) + ~01(x, t) + E~%(x, t) + ...] (B.1) 

Here, the second term ~ol(x, t) in (39) or (B.1) may be of the same order of 
magnitude as the first extensive part E-1%(x, t) in the second regime. How- 
ever, we assume here that the temporal evolutions are determined by equat- 
ing <1~ formally the power series expansions of both sides of (13) after 
substituting (B.1) into (13), to yield the following results: 

0cr176 = - w(x, r) 1 - exp - r ~x ] J dr (B.2) 

0---7 = -~ ~x ~ r ~x ] exp - r dr (B.3) 

and 

~-'--i = ~ + ~x ~x 2 -Tx + w ~x ] Ox 2 

+ w g \ Ox~ I + 2 \ ex21 - 6 ~ -gUl  + 5 \-U~xf - r 

x exp(--r-~x~ ) dr (B.4) 

In greater generality we have 5 

~q~ f 2 ( - r ) ~ - k  0"7 = f~(x, r, t) dr; f~ = ( n - k ) !  gkw(~-~> (B.5) 
k=O 

where w ~ = O'w/Ox", go = 1, and 

[ g~ = ~ ~ exp - r 
mz+~m2+ .... n ma ! m2! ".. 

(ml ~0,m2>O,...) 

' ~  (-- r)" 
Sk = ~ ~n)+ l_m(X, t) (B.6) 

re=j. 

4 Equations (9.7) and (9.8) in Ref. 12 should be corrected to read (B.5) and (B.6), 
respectively. 

8 See footnote 4. 
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As was shown in Ref. 12, Eq. (B.5) takes the form 

O~o,(x,o_____7__t) + el(x)~q~" = R , ( x ,  Cpo,..., go,_~) (B.7) 

for n >i 1. These can be solved formally for n >/ 1 by the Lagrange method. 
From (B.2), %(x, t) satisfies the equation 

&po ~ ( -  1)" . ./9~0ok- 
= (B.8) 

The solution of this equation with the unstable initial condition (1-4) %(x) = 
-x2/(2%) for c~(0) = 0 and 7 - c~'(0) > 0 can be easily shown to take the 
following asymptotic form: 

~Oo(X, t) ~ e -  2'tcpo(x) (B.9) 

for large t. Namely, ~oo(x, t) goes to zero as t increases. Therefore, (B.8) can 
be reduced asymptotically to the following simple linear equation: 

eCpo/Ot = - c~(x) Orpo/OX (B.a0) 

in the second nonlinear regime (i.e., e -2~t ~ ~ << 1), because (&po/Ox) ~ ~ 
e x p ( - 2 n T t )  << exp(-27t )  for n >i 2. Similarly, (B.3) can be reduced to 

~ol(x, t) ~o 1 d 
~t = - cl(x)  8x dx  c~(x) (B.11) 

in the second regime. Clearly, the asymptotic solutions of (B.10) and (B.11) 
with appropriate initial conditions constitute the scaling results (23) and (25). 

All the other terms 9,(x, t) are shown to be of order unity in the second 
regime, except for a linearly divergent term [oc ( -7 t ) ] ,  which comes from the 
normalization of the probability distribution function. Thus, the terms 
(E"9,(x, t)} for n >f 2 can be neglected in the second regime. That is, the 
second term ~l(x, t) is essential in the second scaling regime. 

A justification of the above derivation is given by the fact that the results 
thus obtained agree with those obtained by the rigorous scaling theory. The 
present formulation is useful in treating both unstable and extensive regions 
in a unified way. 

APPENDIX C. RELAXATION A N D  FLUCTUATION OF 
CHEMICAL REACTION IN BRUXELLATOR 
(PLN MODEL)  

As an application of the general theory given in the text, we discuss here 
the fluctuation and relaxation of the Prigogine-Lefever-Nicolis (PLN) 
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model, (21'22) which will be described by the following nonlinear Fokker-  
Planck equation(22): 

[ D alp -~P = - ~ e l ( x )  + (C.1) at ~ ~" "~j 
where the first moment (vector) c~ and diffusion matrix D are given by 

(x2y - b x - a -  x) 
e l= b x - x 2 y  ; a > 0 ,  b > 0  (C.2) 

and 

( D= x2y + a + x + bx' - x 2 Y -  (C.3) 
-x2y - bx, x2y + bx 

with the same notations as in Refs. 21 and 22. Namely, x and y denote the 
concentrations of two kinds of chemical species, and a and b are constants 
related to reaction rates. The unstable equilibrium point is given by 

(xo) 
Xo = , X o = a  Yo = b / a  (C.4) 

Yo 

From the general theory in Section 3, we first linearize (C. 1) as (52) with 
[ b -  1, a 2) 

K0 = el'(Xo) = \ - b ,  - a  2. (C.5) 

and 

= [2ab + 2a, -2ab] (C.6) 
Do \ -2ab, 2ab! 

With these matrices, the solution 3y(t) -- y(t) - Xo of (96) is given by 
3y(t) = [exp(tKo)] 3y(0) 

= exp ( ~ - - ~  t ) [ c o s ( c o t ) -  (Ko b2bc)oJ-lsin~ot]3y(O ) (C.7) 

where 

co = (a 2 - �88 - be)2) 112, bc = a 2 + 1 (C.8) 

The solution ~(t)  of (96) is also given by 

a(t) = [exp(tKo)] [a~(0) - ~o] exp(tl~o) + cro 

= {exp[(b - bc)t]~o(t) + Oo (C.9) 

where ~o(t) is given from (57) as 

a"~(t) = (cos oJt + b  2oJ-bc sin w t -  K~ sin ~ ~  

x [ a ~ ( 0 ) - ~ o ] X  (cosoJt + b - b e  "o ) sin oJt - --co sin wt (C.10) 
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Thus, for the case that ~o is real (i.e., 2a > b - bo > 0), 3y(t) and ~,(t) show 
the following asymptotic behavior: 

By(t) ~ exp[(b - bc)t/2] x (finite vector) (C.11) 

and 

az(t) ~ exp[(b - be)t] x (finite matrix) (C.12) 

Therefore, the general arguments in Section 3 (see Theorem 2) lead to the 
following conclusion: When the initial system is located just at the unstable 
equilibrium point Xo, the variance n(t) is enhanced up to the order 

em~-E at t m ~ - b _ b o l O g  (C.13) 

The new aspect of this result is that the maximum time tm becomes larger and 
larger as the parameter b approaches the critical value bo defined by (C.8). 
This is nothing but the critical slowing down. Thus, a large enhancement of 
fluctuation is expected to be observed experimentally in the future if the 
initial system is near the unstable equilibrium point (C.4). The time to observe 
this effect will be longer for b near be. In this chemical reaction of two 
components, there exist two kinds of modes whose amplification rates near 
the instability point x0 are 

~'1,2 = �89 - b~ + {[b - (a + 1) 2] [b - (a - 1)2]} 1~2) (C.14) 

For the case that 2a > b - bc > 0 considered above, these two values are 
complex and they take the form 

Y~,z = �89 - b~) +_ iw (C.15) 

This leads to the expression (C.10). The point x0 is a spiral unstable equi- 
librium point. On the other hand, for the noncritical case that b > (a + 1) 2 
(>  bc), both ~,~ and ~'2 are real, and xo is a nodal point. The dominant rate 
constant is given by ~,~, and consequently, from the general arguments given 
in Section 3, the variance a(t) is enhanced up to the order 

1 1 1 
Crm - - E at tm ~ ~ log-~ (C.16) 

In the extensive region in which ~ << 32 (where 3 denotes the deviation of 
the initial system from the unstable point; 3 ~_ [Yo - x0l), the distribution 
function P(x, t) is expressed in the Gaussian form (92) asymptotically for a 
small ~ with Eqs. (93), (94), (C.2), and (C.3) and with (z2) 

K ( y ) =  (2Xb - b - l '  x2) 
2xy, - x  2 (C.17) 

It is still difficult to solve analytically Eq. (93) for (C.2), because it is highly 
nonlinear. However, as was shown generally in Section 4, the anomalous 
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fluctuation effect of this two-component system can be discussed by com- 
bining the behavior of the fluctuation in the initial linear regime and the 
nonlinear effect (which is usually taken into account perturbationally) in the 
second regime. Thus, we discuss first the solutions of Eqs. (93) and (94) with 
(C.5) and (C.6) instead (C.2) and (C.3). This corresponds to the linearization. 
Therefore, the solutions are given by (C.7) and (C.9). Namely, 

[3y(t)[ ~ 3 e x p [ ( ~ - ~ )  t] (C.18) 

As was discussed in Section 4, the above linear approximation is valid at 
most only up to the time t~ which satisfies 

3 e x p ( ~ - ~  t l ) _ ~ A  (C.19) 

in the region 2a > b - bc > 0. That is, tl is given by 

2 log A 
tl ~ b - bc 3 (C.20) 

Correspondingly, the variance becomes of the order 

Crm --~ exp(b - bc)q ~- (A/3) 2 ~ 1/32 (C.21) 

Namely, the variance of the maximum mode is enhanced proportionally to 
the inverse square of the deviation 3 of the initial system form the unstable 
point. 

These anomalous effects are expected to be observed experimentally in 
the future. 
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